A polynomial realization of the Hopf algebra of uniform block permutations

نویسنده

  • Rémi Maurice
چکیده

We investigate the combinatorial Hopf algebra based on uniform block permutations and we realize this algebra in terms of noncommutative polynomials in infinitely many bi-letters. Résumé. Nous étudions l’algèbre de Hopf combinatoire dont les bases sont indexées par les permutations de blocs uniformes et nous réalisons cette algèbre en termes de polynômes non-commutatifs en une infinité de bi-lettres.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hopf Algebra of Uniform Block Permutations. Extended Abstract

Abstract. We introduce the Hopf algebra of uniform block permutations and show that it is self-dual, free, and cofree. These results are closely related to the fact that uniform block permutations form a factorizable inverse monoid. This Hopf algebra contains the Hopf algebra of permutations of Malvenuto and Reutenauer and the Hopf algebra of symmetric functions in non-commuting variables of Ge...

متن کامل

The Hopf Algebra of Uniform Block Permutations

We introduce the Hopf algebra of uniform block permutations and show that it is self-dual, free, and cofree. These results are closely related to the fact that uniform block permutations form a factorizable inverse monoid. This Hopf algebra contains the Hopf algebra of permutations of Malvenuto and Reutenauer and the Hopf algebra of symmetric functions in non-commuting variables of Gebhard, Ros...

متن کامل

Hopf algebra structure on packed square matrices

We construct a new bigraded Hopf algebra whose bases are indexed by square matrices with entries in the alphabet {0, 1, . . . , k}, k > 1, without null rows or columns. This Hopf algebra generalizes the one of permutations of Malvenuto and Reutenauer, the one of k-colored permutations of Novelli and Thibon, and the one of uniform block permutations of Aguiar and Orellana. We study the algebraic...

متن کامل

Combinatorial Realization of the Hopf Algebra of Sashes

A general lattice theoretic construction of Reading constructs Hopf subalgebras of the Malvenuto-Reutenauer Hopf algebra (MR) of permutations. The products and coproducts of these Hopf subalgebras are defined extrinsically in terms of the embedding in MR. The goal of this paper is to find an intrinsic combinatorial description of a particular one of these Hopf subalgebras. This Hopf algebra has...

متن کامل

Stochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients

It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012